alpacadsc

Oct 21, 2020

Contents:

Introduction 1
Usage 3
2.1 Installation e e e 3
2.2 Starting The Alpaca Service o o i e e e e e e e e e 3

2.2.1 Command Line Options o 0 0 i it e e e e e e e e e 4

222 LogFileOutput e 4
2.3 Configuration e e e e e e e e e 4

23,1 Profiles e e 5

232 LOCcationt i e e e e e e e e e 6
2.4 Using With Planetarium Software e 7
2.5 Debugging Encoders e e 7
Writing A New Driver 9
alpaca package 11
4.1 Submodules e e e e e 11
4.2 alpacadsc.alpaca_controllermodule L 11
4.3 alpacadsc.alpaca_models module 11
4.4 alpacadsc.alpaca_servicemodule L Lo 11
4.5 alpacadsc.altaz_dsc_profilemodule L 11
4.6 alpacadsc.baseencoders module e 12
4.7 alpacadsc.encoders_altaz_daveek module L L 13
4.8 alpacadsc.encoders_altaz_simulatormodule L Lo 14
4.9 alpacadsc.profilesmodule 14
4.10 alpacadsc.setup_controllermodule oL Lo 16
4.11 alpacadsc.startservice module e 16
4.12 Module CONENES v v v vt e e e e e e e e e e e e e e e e 16
Design Specification 17
5.1 Introduction e e e e e 17

ST PUrpose . . . oo e e e e e e e e e e e e e e e 17

S5.1.2 0 Scope ..o e e e e e e 17

5.1.3 Technical Overview o e e e e e e e 18

5.1.4 Requirements e e e 18
Tests 23

6.1

6.2

Test Cases e e e e e e e e e e e e e e e
6.1.1 test_server_basic
6.1.2 test_server_alpaca. e e e e e e e e e
6.1.3 test_server_pointing

utils module

7 Indices and tables

Python Module Index

Index

25

27

29

CHAPTER 1

Introduction

The Alpaca digital setting circles driver (alpacadsc) allows connecting client software like planetariums to ALT/AZ
mounted telescopes like dobsonians with the appropriate hardware. The software supports tracking the position of the
telescope as it is moved across the sky, allowing easy acquisition of sky targets.

The basic theory of operation is for the user to locate a sky target such as a bright star and center the telscope on the
target. Then using the planetarium software the user send a “Sync” command to the driver with the coordinates of the
target. In Cartes du Ciel, for example, the user would right click on the target and select “Sync”. This tells the driver
where it is currently pointing in the sky. Using the configured latitude and longitude and the current time alpacadsc
can then compute the altitude and azimuth of the target. From this it can then compute the altitude and azimuth of the
telescope from the changes in the encoder values.

This simple “I star” synchronization works well over a small part of the sky (say 30-50 degrees) as long as the
telescope is fairly level. If you find the pointing of the scope is poor as you get farther from the original sync target
then simply sync on a new target closer to your desired desination target. This should improve the pointing accuracy.
Do this as necessary as you move around the sky.

Before using alpacadsc it is necessary to configure a profile for your telescope. This an other usage details are covered
in the Usage section.

alpacadsc

2 Chapter 1. Introduction

CHAPTER 2

Usage

2.1 Installation

The Alpaca digital setting circles driver (alpacadsc) can be installed from source. It supports setup.py so the package
can be installed using the command:

’pythonB setup.py install

Alternately a distribution package can be created with:

’python3 setup.py bdist_wheel

The resulting package can be installed with:

’python} -m pip install <bdist_file>

where <bdist_file> will be the newly created package in the “dist/” folder.
Other options available are:

* Rebuilding the documentation into the directory docs/build/html.

’pythonB setup.py build_sphinx

¢ Run several tests on the code base.

’pythonB setup.py test’

2.2 Starting The Alpaca Service

You will need to start the Alpaca service which will allow software to connect with your setting circles. The command
to do this on Linux is:

alpacadsc

’alpacadsc

and on Windows would be:

’alpacadsc.exe

You can also start the service by invoking the module via python:

’python -m alpacadsc.startservice

The service will start and by default listens to the port 8000 on the local host.

Warning: The service will run a web server on your system that will listen for incoming connections from
Alpaca clients. It should only listen for connections from your local computer. At this point alpacdsc is still in
development and such the test server built into Flask is being used. You will see a warning when you start the
service that says this. The intention long term is to move off the internal Flask server.

2.2.1 Command Line Options

The service accepts several command line options:

——port port
Sets the port that the Alpaca service will listen to for client connections. The default value is 8000.

——profile PROFILE
Use the configuration profile PROFILE. If none is supplied then the last profile used will be loaded.

—-listprofiles
List all profiles which are currently defined.

——debug
Show additional debugging information in log file.

2.2.2 Log File Output

A log file will be created in the directory from which the service was started and has a filename of the format alpacadsc-
<dateime>.log where datetime is a timestamp of when the service was started. This file can be helpful when trying to
track down problems or reporting an issue you may encounter.

2.3 Configuration

Before connecting to the Alpaca service you will need to configure a profile for your equipment.

Note: You cannot configure the Alpaca server if a program is currently connected to the service so be sure to
disconnect all clients before attempting configuration.

The configuration page is available by connecting a browser to:
http://localhost:8000/setup/v 1/telescope/O/setup

As a convenience if you connect to:

4 Chapter 2. Usage

http://localhost:8000/setup/v1/telescope/0/setup

alpacadsc

http://localhost:8000
or:
http://localhost:8000/setup

a link will be provided to get to the actual configuration page.

2.3.1 Profiles

The first step is to create a new profile for your equipment. This is done using the “Create New Profile” button. Fill
in the box next to the button with the name of the new profile and click the button. If successful a new page will load
confirming the new profile has been created. Use the link to return to the configuration page.

When a new profile is created the current profile used for the service will be set to the new profile. If you want
to change the current profile to a previously created profile use the “Change Profile” button. A new page will load
showing all the available profiles with a checkbox next to each one. Select the checkbox for the profile you want to
switch to and then click the “Change Profile” button.

The current profile will automatically be loaded whenever the service is started. Optionally the —profile command line
option can be used to specify the profile to be used. To get a list of available profiles use the —listprofiles command
line option.

Profiles are stored as YAML formatted files. The location of the profile files depends on the platform:

Linux $(HOME)/.config/alpacadsc
Windows | %APPDATA%/alpacadsc

If you want to backup your settings or move them to another computer you can copy the profiles stored here. The
current profile name is stored in the file “current_profile.yaml”.

The location configuration in the YAML file are stored in an array called “location” with the following keys:

Key Data Type | Notes

obsname | String Human readable name of location
longitude | Float Longitude as decimal degrees
latitude Float Latitude as decimal degrees
altitude Float Altitude in meters

An example is:

location:
obsname: Observatory
longitude: 100.0
latitude: 30.0
altitude: 450.0

The encoder configuration in the YAML file are stored in an array called “encoders” with the following keys:

2.3. Configuration 5

http://localhost:8000
http://localhost:8000/setup

alpacadsc

Key Data Type | Notes

driver String Name of driver - currently “DaveEk” is only allowed
serial_port String Serial port device name

serial_speed Integer Serial port speed

alt_resolution | Integer Tics per revolution for alt encoder

az_resolution | Integer Tics per revolution for alt encoder

alt_reverse Boolean If true then reverse alt axes

az_reverse Boolean If true then reverse alt axes

An example is:

encoders:
alt_resolution: 4000
alt reverse: false
az_resolution: 4000
az_reverse: false
driver: DaveEk
serial port: /dev/ttyUSB1
serial_ speed: 9600

2.3.2 Location

The observing location needs to be set for each profile. This consists of the name of the location (a string) as well as
the latitude, longitude and altitude (meters). Specify the latitude and longitude as decimal degrees and use a negative
longitude for Western latitudes.

For example, if the location is latitude equal to 36d40m20s North and longitude was 30d30m10s West, first convert the
sexagesimal degrees to decimal degrees yielding 36.67222 North, 30.502778 W. Since the longitude is a Western one
then convert it to a negative value so you would use “36.67222” for the latitude and “-30.502778” as the longitude.

There are websites that can convert sexagesimal degrees to decimal degrees as well as many calculators have a function
to perform this conversion.

Once these settings are entered use the “Save Changes” button to make them permanent. The button only saves the
location settings.

Encoders

The encoders used by the digital setting circles (DSC) also need to be configured.

Currently the Alpaca service only supports DSC which use the “Dave Eks” protocol so the “Driver” should be set to
“DaveEk”.

The serial port should be configured to match the port the DSC is connected to - there will be some suggested ports
based on the available ports on the computer.

The serial speed must match that of the DSC - 9600 is typical.

The resolution of the encoders on the altitude and azimuth axes must also be specified. Common values are 4000,
8000 or 10000. If this value is wrong then the service will not properly track the scope as it is moved.

Finally two checkboxes are available to tell the service the altitude and/or azimuth encoder outputs need to be reversed.
If you move the scope one way and it moves the opposite direction in your software connected to the service then try
reversing the axis.

6 Chapter 2. Usage

alpacadsc

Once these settings are entered use the “Save Changes” button to make them permanent. The button only saves the
encoder settings.

2.4 Using With Planetarium Software

First start the Alpaca DSC driver service as shown in the section Starting The Alpaca Service.

Then use your software to connect to the service. The software must support Alpaca to work with this driver. You will
want to configure the server IP as 127.0.0.1 or “localhost” and the server port as 8000.

Once connected to the Alpaca DSC driver service the driver will still need to be synchronized with the sky before it
can report the position of the telescope. This is done by finding a star in your planetarium program and then manually
pushing the telescope so the same star is centered in the eyepiece. Now use the “Sync” command in your program to
tell the driver to sync on the current position. This will let the driver know the current telescope position and from then
on the driver will report the ALT/AZ and RA/DEC values as the telescope is moved around.

For best results choose a star to synchronize on which is close to the area of the sky you will be observing. If you
move to another part of the sky then you can synchronize on a new star in that region. The sync operation will override
the previous one.

The synchronization with the sky is lost when the driver exits.

2.5 Debugging Encoders

There is a debugging web page generated by the driver which reports the current encoder raw counts if the driver is
connected. If the driver has been synchronized with a star then it will also report the current ALT/AZ and RA/DEC
position.

2.4. Using With Planetarium Software 7

alpacadsc

8 Chapter 2. Usage

CHAPTER 3

Writing A New Driver

The alpacadsc package supports adding new drivers for digital setting circles/encoders. Currently any digital setting
circles which use a serial port interface and report the raw encoders counts should be able to made to work. Digital
setting circles that work in celestial coordinates (RA/DEC) will not work with the current alpacadsc implementation.

To add a new driver create a new source file with a name following the pattern “encoders_altaz_<drivername>.” The
package includes a reference driver for encoders supporting the “Dave Ek” protocol as well as a simulator. The “Dave
Ek” driver would be a good starting point. Simply copy the driver source and then edit to change the various methods
to use the protocol commands for the encoders in question and parse the return values. Also change the name of the
driver in the “name()” method to be a human readable name for your new driver.

To test simply put the new source file in the alpacadsc package location. When alpacadsc loads it will scan for
modules following the pattern given above for encoders driver plugin and detect it. It will also be given as an option
on the configuration page.

alpacadsc

10 Chapter 3. Writing A New Driver

CHAPTER 4

alpaca package

4.1 Submodules

4.2 alpacadsc.alpaca_controller module
4.3 alpacadsc.alpaca_models module
4.4 alpacadsc.alpaca_service module

4.5 alpacadsc.altaz_dsc_profile module

class alpacadsc.altaz_dsc_profile.AltAzSettingCirclesProfile (reldir,
name=None)
Bases: alpacadsc.profiles.Profile
class Encoders (_sectionname: str = 'encoders’, driver: str = None, serial_port: str = None, se-
rial_speed: int = 9600, alt_resolution: int = None, az_resolution: int = None,

alt_reverse: bool = False, az_reverse: bool = False)
Bases: alpacadsc.profiles.ProfileSection

alt_resolution = None
Alt axis resolution

alt_reverse = False
Reverse ALT?

az_resolution = None
AZ axis resolution

az_reverse = False
Reverse AZ?

11

alpacadsc

driver = None
serial_port = None
serial_speed = 9600

class Location (_sectionname: str = ’location’, obsname: str = None, latitude: float = None, lon-

gitude: float = None, altitude: float = None)
Bases: alpacadsc.profiles.ProfileSection

altitude = None
Altitude in meters

latitude = None
Latitude in degrees

longitude = None
Longitude in degrees

obsname = None
Name of observing location

read ()
Read profile config file.

Returns (bool) Whether or not read succeeded.

4.6 alpacadsc.baseencoders module

class alpacadsc.baseencoders.A
Bases: alpacadsc.baseencoders.EncodersBase

class alpacadsc.baseencoders.EncodersBase
Bases: object

Base class for all encoder drivers.

connect ()
The driver should connect to the digital setting circles hardware when this method is called.

disconnect ()
The driver should disconnect to the digital setting circles hardware when this method is called.

get_encoder_ position ()
Read the encoders resolution from the digital setting circles hardware.

Returns (tuple) The position of the altitude and azimuth encoders.

get_encoder_resolution ()
Read the encoders resolution from the digital setting circles hardware.

Returns (tuple) The resolution of the altitude and azimuth encoders.

name ()
Returns the human readable name for this driver.

set_encoder_ resolution (res_alt, res_az)
Read the encoders resolution from the digital setting circles hardware.

Parameters
e res_alt — Resolution (steps/rev) of altitude encoder.

* res_alt — Resolution (steps/rev) of azimuth encoder.

12 Chapter 4. alpaca package

alpacadsc

4.7 alpacadsc.encoders_altaz_daveek module

class alpacadsc.encoders_altaz_daveek.EncodersDaveEk (res_alt=4000, res_az=4000,
reverse_alt=False, re-

verse_az=False)
Bases: alpacadsc.baseencoders.EncodersBase

Parameters
e res_alt (int, optional) - Altitude encoder resolution, defaults to 4000
e res_az (int, optional)- Azimuth encoder resolution, defaults to 4000
* reverse_alt (bool, optional)- Reverse altitude axis, defaults to False
* reverse_az (bool, optional)- Reverse azimuth axis, defaults to False

connect (port, speed=9600)
The driver should connect to the digital setting circles hardware when this method is called.

Parameters
» port — Serial device to which digital setting circles is connected.
* res_alt — Speed for serial connection.

Returns True is successful.

Return type bool

disconnect ()
Disconnect.

Returns True is successful.
Return type bool

get_encoder_position ()
Read the encoders resolution from the digital setting circles hardware.

Returns (ttuple) The position of the altitude and azimuth encoders.

get_encoder_resolution ()
Read the encoders resolution from the digital setting circles hardware.

Returns (tuple) The resolution of the altitude and azimuth encoders.

name ()
Returns the human readable name for this driver.

set_encoder resolution (res_alt, res_az)
Read the encoders resolution from the digital setting circles hardware.

Parameters
* res_alt — Resolution (steps/rev) of altitude encoder.

* res_alt — Resolution (steps/rev) of azimuth encoder.

4.7. alpacadsc.encoders_altaz_daveek module 13

alpacadsc

4.8 alpacadsc.encoders_altaz_simulator module

class alpacadsc.encoders_altaz_simulator.EncodersAltAzSimulator (res_alt=4000,
res_az=4000,
* re-
verse_alt=False,
re-

verse_az=False)
Bases: alpacadsc.baseencoders.EncodersBase

Parameters
* res_alt (int, optional) - Altitude encoder resolution, defaults to 4000
e res_az (int, optional)- Azimuth encoder resolution, defaults to 4000
e reverse_alt (bool, optional)- Reverse altitude axis, defaults to False
* reverse_az (bool, optional)- Reverse azimuth axis, defaults to False

connect (port, speed=9600)
The driver should connect to the digital setting circles hardware when this method is called.

Note: port and speed ignored in this simulator driver.
Parameters
» port — Serial device to which digital setting circles is connected.
* res_alt — Speed for serial connection.
Returns (bool) True is successful.

disconnect ()
The driver should disconnect to the digital setting circles hardware when this method is called.

get_encoder_position ()
Read the encoders resolution from the digital setting circles hardware.

Returns (ttuple) The position of the altitude and azimuth encoders.

get_encoder_resolution ()
Read the encoders resolution from the digital setting circles hardware.

Returns (ttuple) The resolution of the altitude and azimuth encoders.

name ()
Returns the human readable name for this driver.

set_encoder resolution (res_alt, res_az)
Read the encoders resolution from the digital setting circles hardware.

Parameters
* res_alt — Resolution (steps/rev) of altitude encoder.

* res_alt — Resolution (steps/rev) of azimuth encoder.

4.9 alpacadsc.profiles module

class alpacadsc.profiles.Profile (reldir, name=None)
Bases: object

14 Chapter 4. alpaca package

alpacadsc

Stores program settings which can be saved persistently. Supports ProfileSection’s which allow a hierarchical
namespace for parameters.

Set some defaults for program settings
Parameters

* reldir (str) — location relative to top of default config location If None then will be
relative to current working directory.

* name (str)—name of profile config file
Note: reldir = “hfdfocus/” and name = “C8F7.yaml” would create a file <configbasedir>/hfdfocus/C8F7.yaml

add_section (sectionclass)
Add a section to Profile.

Parameters sectionclass (ProfileSection)— Section to be added.

filename ()
Return profile config filename.

Returns (Path) Profile filename

read ()
Read profile config file.

Returns (bool) Whether or not read succeeded.

write ()
Write profile config file.

Returns (bool) Whether or not write succeeded.

class alpacadsc.profiles.ProfileSection
Bases: object

A ProfileSection is a subtree member of a Profile and contains its own set of key/value pairs. Multiple Profile-
Section’s can be added to a Profile to give parameters different namespaces in the Profile.’

get (key, default=None)
Retrieve parameter from ProfileSection by key name. Default value used if key not found in ProfileSection.

Parameters

* key (str)— Name of parameter to retrieve

* default - Optional default value if key not present
Returns Parameter value or default value if not present.

alpacadsc.profiles.find_profiles (loc)
Return list of existing profiles in given location loc. The location loc is relative to the base path for config files
for the given platform.

Parameters loc (str)— Directory relative to base config path to search for profiles
Note Assumes profile configuration files end with ‘.yaml’
Returns (List[str]) List of profiles found or [] if none available.

alpacadsc.profiles.get_base_config dir ()
Find base path for where to store config files depending on platform.

Returns (Path) Root path of where config files are stored

Raises FileNotFoundError — If base path cannot be determined.

4.9. alpacadsc.profiles module 15

alpacadsc

alpacadsc.profiles.get_current_profile (loc)
Read current_profile.yaml file to get name of current profile.

Parameters loc (str)— Directory relative to base config path to search for profiles
Returns (str) Name of currently active profile or None if none defined.

alpacadsc.profiles.set_current_profile (loc, current_profile_name)
Write current_profile.yaml file with name of current profile.

Parameters
* loc (str)— Directory relative to base config path to search for profiles

* current_profile_name (str)— Name of current active profile - do NOT include a
‘.yaml’ extension on the profile name.

Returns (bool) Whether operation was successful or not

4.10 alpacadsc.setup_controller module
4.11 alpacadsc.startservice module

4.12 Module contents

16 Chapter 4. alpaca package

CHAPTER B

Design Specification

Author: Michael Fulbright

Contact: mike.fulbright@pobox.com
Status: Initial draft

Date: 2020-09-04

5.1 Introduction

5.1.1 Purpose

The main purpose of this document is to outline the requirements of the Alpaca Digital Setting Circles Driver (hereafter
“DSC driver”). This specification will cover the user experience as well as address some details of the technical
implementation.

The digital setting circles (DSC) is a device which interfaces which each movable axis of a telescope and tracking
change sin position. The most common use is on a dobsonian telescope which has altitude (ALT) and azimuth (AZ)
axes. The ALT axis moves from the horizon to straight overhead (the zenith), while the AZ axis corresponds to the
distance from North around the horizon. These together allow the specification of any point in the sky.

By reading the changes in the ALT and AZ position of the telescope a program can track the telescope and determine
where it is pointing in the night sky. A planetarium program can be used which also has a database of sky objects and
so the telescope position can be plotted against the known objects. This allows user (“observer”) to find objects by
moving the telescope until it is at the desired object.

5.1.2 Scope

The DSC Driver will allow users to:
 connect to a DSC using an application which supports Alpaca

* edit the configuration of the DSC (serial port, encoder resolution, etc)

17

mailto:mike.fulbright@pobox.com

alpacadsc

* edit the geographical location where the observer is location
 synchronize the telescope location via a planetarium program

* once synchronized the user can get locate objects using the planetarium program

5.1.3 Technical Overview

Supported Platforms

The DSC driver will support Windows and Linux targets initially. In theory the driver should work on any platform
which supports Python 3.

Communication Interfaces
The DSC driver will listen on a TCP port for REST API requests which are how an Alpaca driver communicates with
clients.

The DSC driver will also communicate with the DSC device. This is normally a serial interface such as RS232 or a
USB<->RS232 adapter. Wireless operation using a serial stream via Bluetooth or WiFi is also possible.

Assumptions and Dependencies
The DSC driver uses Python 3.7 and depends on <insert python web framework> web framework to implement the
REST API server needed for Alpaca. The pyserial module is used for communicating with serial devices.

Currently the driver assumes an ALT/AZ arrangement for the telescope. It would be possible to support a RA/DEC
arrangement (like a German Equatorial Mount (GEM)), but this is beyond the scope of the current implementation.

5.1.4 Requirements

Functions

Alpaca Telescope Driver

The Alpaca driver listens on a TCP socket for REST API requests from clients. There are several classes of devices
supported by Alpaca such as cameras, telescope, filter wheels, etc. The DSC Driver is a telescope device. The entire
API for a telescope device is not implemented however, as this is not required for a DSC device.

The entire Alpaca API for a telescope device is NOT implemented, but only those sufficient to get a planetarium
program working. The program Cartes du Ciel was used for testing - other programs may require additional API
components to be implemented.

The following Alpaca API interfaces are implemented:

Name GET | SET | Notes

alignmentmode YES | NO Returns ALPACA_ALIGNMENT_ALTAZ
altitude YES | NO | Need to implement SET

aperturearea YES | NO | Need to implement SET

aperturediameter YES | NO | Need to implement SET

athome YES | NO | Returns FALSE

atpark YES | NO | Retursn FALSE

Continued on next page

18 Chapter 5. Design Specification

alpacadsc

Table 1 — continued from previous page

Name GET | SET | Notes
axisrates YES | NO | Returns empty list
azimuth YES | NO

canfindhome YES | NO Returns FALSE
canmoveaxis YES | NO | Returns FALSE
canpark YES | NO | Returns FALSE
canpulseguide YES | NO Returns FALSE
cansetdeclinationrate YES | NO | Returns FALSE
cansetguiderates YES | NO Returns FALSE
cansetpark YES | NO | Returns FALSE
cansetpierside YES | NO Returns FALSE
cansetrightascensionrate | YES | NO | Returns FALSE
cansettracking YES | NO Returns FALSE
canslew YES | NO | Returns FALSE
canslewaltaz YES | NO Returns FALSE
canslewaltazasync YES | NO | Returns FALSE
canslewasync YES | NO Returns FALSE
cansync YES | NO Returns TRUE
cansyncaltaz YES | NO Returns FALSE
connected YES | NO

declination YES | NO

description YES | NO
destinationsideofpier

doesrefraction YES | NO | Returns FALSE
driverinfo YES | NO

equatorialsystem YES | NO Returns FALSE
focallength YES | YES

interfaceversion YES | NO

ispulseguiding YES | NO | Returns FALSE
rightascension YES | NO

sideofpier YES | NO | Returns O
sideraltime YES | NO

siteelavation YES | NO | Need to implement SET
sitelatitudev YES | NO | Need to implement SET
sitelongitude YES | NO | Need to implement SET
slewing YES | NO Returns FALSE
supportedactions YES | NO

synctocoordinates NO YES

targetdeclination YES | NO
targetrightascension YES | NO

tracking YES | NO

trackingrate YES | NO

trackingrates YES | NO

utcdate YES | NO

Interface to DSC Encoders

The DSC driver also maintains communication with the encoders of the DSC device. This gives the position of the
ALT and AZ axes of the telescope. The DSC is polled at regular intervals for its current position and the driver then
recomputes the sky position that the telescope is currently pointed. This computation depends upon the user first

5.1. Introduction 19

alpacadsc

performing a synchronize (or sync) operation which involves pointing the telescope at a known star or sky objects and
telling the planetarium program to synchronize the mount. The DSC driver uses the raw ALT/AZ encoder positions
and the RA/DEC coordinates of the target chosen in the sky for syncing and computes a mapping from raw encoder
position to sky position.

Encoder Synchronization

The DSC encoders report back the change in the position of each axis since the DSC was powered on. The changes
are relative to the original position. In order to map these values to the position of the telescope in the sky the user
must synchronize the DSC encoders. The process is as follows:

» User points the telescope to a star or sky object in the planetarium catalog.

* Once the object is centered in the field of view (FOV) of the telescope the planetarium program is told to “sync”
the position of the telescope.

* The DSC driver receives the sync request and records the raw DSC encoder values.
» Using the encoder resolution for each axis the raw encoder values are converted to degrees.

» Using the geographic location of the observer site and the current time the current position of the object in the
sky (ALT/AZ) is computed.

* A linear mapping between the raw encoder values and the actual ALT/AZ position is computed and applied to
future value read from the DSC device.

* Itis assumed the dobsonian base is level for this simple synchronization to work.

This simple mapping works well within the vicinity of the object chosen for synchronization but will become more
inaccurate as the observing position is farther and farther from the synchronization position. The easy remedy is to
chose a new synchronization point when moving to a new area of the sky.

Observing Profile

A profile is stored for each observing configuration which contains the following information:
* location

location name

latitude (decimal degrees)

longitude (decimal degrees)

— altitude (meters)
* DSC configuration

— serial port for DSC

— communication speed

— ALT/AZ encoder resolution

— Whether ALT and/or AZ direction is reversed
* equipment information

— aperture of telescope

— focal length of telescope

20 Chapter 5. Design Specification

alpacadsc

This profile is stored as a YACC file under a system configuration directory which depends on the system platform.
For Linux is it stored in the “.config/AlpacaDSCDriver” directory in the user’s home directory. In Windows it is stored
in the directory “%APPDATA”/AlpacaDSCDriver”.

Web dashboard

The DSC driver also has a built in web server which is used to monitor the current status of the DSC driver as well as
config the driver. The status page displays the following information:

* current raw encoder counts

* current sky position as ALT/AZ (if synchronized)

e current sky position as RA/DEC (if synchronized)

* whether the mount is tracking (for dobsonians on an equatorial platform - not currently implemented)
* current observational profile

A button exists that will lead to an alternate web page allows configuring the observing profile mentioned in the
previous section “Observing Profile”. The user can also create a new profile, load an existing profile, or save the
current profile under a new name.

5.1. Introduction 21

alpacadsc

22 Chapter 5. Design Specification

CHAPTER O

Tests

6.1 Test cases

The test cases can be executed using the command:

python setup.py test

6.1.1 test_server_basic

Tests various HTTP endpoints served by the driver work properl including pages supporting the configuration of the
driver.

6.1.2 test_server_alpaca

Tests basic Alpaca REST API calls.

6.1.3 test_server_pointing

Tests reading encoders value and that syncronizing the driver and moving scope to a new position tracks in ALT/AZ
and RA/DEC properly.

6.2 utils module

23

alpacadsc

24 Chapter 6. Tests

CHAPTER /

Indices and tables

* genindex
* modindex

e search

25

alpacadsc

26 Chapter 7. Indices and tables

Python Module Index

a

alpacadsc,
alpacadsc.

alpacadsc

16
altaz_dsc_profile, Il

.baseencoders, 12
alpacadsc.
alpacadsc.
alpacadsc.

encoders_altaz_daveek, 13
encoders_altaz_simulator, 14
profiles, 14

27

alpacadsc

28 Python Module Index

Index

Sym bols attribute), 12
—debug az_resolution (al-
alpacadsc command line option,4 pacadsc.altaz_dsc_profile.AltAzSetting CirclesProfile. Encoders
~listprofiles attribute), 11
alpacadsc command line option,4 az_reverse (alpacadsc.altaz_dsc_profile. AltAzSetting CirclesProfile. Enc
-port port attribute), 11
alpacadsc command line option,4 C
—-profile PROFILE
alpacadsc command line option,4 connect () (alpacadsc.baseencoders.EncodersBase
method), 12
A connect () (alpacadsc.encoders_altaz_daveek.EncodersDaveEk
A (class in alpacadsc.baseencoders), 12 method), 13
add_section () (alpacadsc.profiles.Profile method), connect () (alpacadsc.encoders_altaz_simulator. EncodersAltAzSimulato
15 method), 14
alpacadsc (module), 16
alpacadsc command line option D
—-debug, 4 disconnect () (alpacadsc.baseencoders.EncodersBase
-listprofiles,4 method), 12
-port port,4 disconnect () (alpacadsc.encoders_altaz_daveek.EncodersDaveEk
-profile PROFILE,4 method), 13
alpacadsc.altaz_dsc_profile (module), 11 disconnect () (alpacadsc.encoders_altaz_simulator. EncodersAltAzSimi
alpacadsc.baseencoders (module), 12 method), 14
alpacadsc.encoders_altaz_daveek (module), driver (alpacadsc.altaz_dsc_profile.AltAzSettingCirclesProfile. Encoders
13 attribute), 11
alpacadsc.encoders_altaz_simulator (mod-
ule), 14 E
alpacadsc.profiles (module), 14 EncodersAltAzSimulator (class in al-
alt_resolution (al- pacadsc.encoders_altaz_simulator), 14
pacadsc.altaz_dsc_profile. AltAzSetting CirclesProfie.EseedesBa se (class in alpacadsc.baseencoders), 12
attribute), 11 EncodersDaveEk (class in al-
alt_reverse (alpacadsc.altaz_dsc_profile. AltAzSetting CirclesProfijadaaisedaisoders_altaz_daveek), 13
attribute), 11

AltAzSettingCirclesProfile (class in al- F
pacadsc.altaz_dsc_profile), 11

AltAzSettingCirclesProfile.Encoders
(class in alpacadsc.altaz_dsc_profile), 11

AltAzSettingCirclesProfile.Location G

(class in alpacadsc.altaz_dsc_profile), 12 .
altitude (alpacadsc.altaz_dsc _proﬁle.AltAZSettingCirclegﬁitoﬁ)e.(ﬁgz‘%%%sc'p rofiles. ProfileSection method), 15

filename () (alpacadsc.profiles.Profile method), 15
find_profiles () (in module alpacadsc.profiles), 15

29

alpacadsc

get_base_config_dir () (in module al- serial_speed (alpacadsc.altaz_dsc_profile.AltAzSetting CirclesProfile.I
pacadsc.profiles), 15 attribute), 12

get_current_profile() (in module al- set_current_profile () (in module al-
pacadsc.profiles), 15 pacadsc.profiles), 16

get_encoder_position () (al- set_encoder_resolution () (al-
pacadsc.baseencoders.EncodersBase method), pacadsc.baseencoders.EncodersBase method),
12 12

get_encoder_position () (al- set_encoder_resolution () (al-
pacadsc.encoders_altaz_daveek.EncodersDaveEk pacadsc.encoders_altaz_daveek.EncodersDaveEk
method), 13 method), 13

get_encoder_position () (al- set_encoder_resolution () (al-
pacadsc.encoders_altaz_simulator. EncodersAltAzSimulatorpacadsc.encoders_altaz_simulator. EncodersAltAzSimulator
method), 14 method), 14

get_encoder_resolution () (al-
pacadsc.baseencoders.EncodersBase method), W
12 write () (alpacadsc.profiles.Profile method), 15

get_encoder_resolution () (al-
pacadsc.encoders_altaz_daveek.EncodersDaveEk
method), 13

get_encoder_resolution () (al-
pacadsc.encoders_altaz_simulator. EncodersAltAzSimulator
method), 14

L

latitude (alpacadsc.altaz_dsc_profile. AltAzSettingCirclesProfile. Location
attribute), 12

longitude (alpacadsc.altaz_dsc_profile.AltAzSetting CirclesProfile. Location
attribute), 12

N

name () (alpacadsc.baseencoders.EncodersBase
method), 12

name () (alpacadsc.encoders_altaz_daveek.EncodersDaveEk
method), 13

name () (alpacadsc.encoders_altaz_simulator. EncodersAltAzSimulator
method), 14

O

obsname (alpacadsc.altaz_dsc_profile.AltAzSetting CirclesProfile. Location
attribute), 12

P

Profile (class in alpacadsc.profiles), 14
ProfileSection (class in alpacadsc.profiles), 15

R

read () (alpacadsc.altaz_dsc_profile.AltAzSetting CirclesProfile
method), 12
read () (alpacadsc.profiles.Profile method), 15

S

serial_port (alpacadsc.altaz_dsc_profile. AltAzSettingCirclesProfile. Encoders
attribute), 12

30 Index

	Introduction
	Usage
	Installation
	Starting The Alpaca Service
	Command Line Options
	Log File Output

	Configuration
	Profiles
	Location

	Using With Planetarium Software
	Debugging Encoders

	Writing A New Driver
	alpaca package
	Submodules
	alpacadsc.alpaca_controller module
	alpacadsc.alpaca_models module
	alpacadsc.alpaca_service module
	alpacadsc.altaz_dsc_profile module
	alpacadsc.baseencoders module
	alpacadsc.encoders_altaz_daveek module
	alpacadsc.encoders_altaz_simulator module
	alpacadsc.profiles module
	alpacadsc.setup_controller module
	alpacadsc.startservice module
	Module contents

	Design Specification
	Introduction
	Purpose
	Scope
	Technical Overview
	Requirements

	Tests
	Test cases
	test_server_basic
	test_server_alpaca
	test_server_pointing

	utils module

	Indices and tables
	Python Module Index
	Index

